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AN ANALYSIS OF THE CONTINUOUS-SPIN, ISING MODEL

ABSTRACT

The critical behavior of the continuous-spin Ising
model 1s studied by high temperature methods and compared
with renormalization group results. The critical
exponent inequality & > A/(A-y) 1is proven and used to

show that 2A < dv + vy requires vy(§+1)/(6-1) < dv.



AN ANALYSIS OF THE CONTINUOUS-SPIN, ISING MOLEL*

George A. Baker, Jr.

Theoretical Division
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Since the time when the study,of relations between the various
critical indices was systemitized,  thesc indices have been classed
into groups. First, T remind you of some notation. 1If ¥ 1is the
magnetic susceptibility, M the magnetization, Cq the specific heat
at constant magnetic field, and I the correlation length, then near
the critical point, temperature, T = I,, and magnetic field, H = O,
for an 1sing model on a d-dimensional, rigid, regular space-lattice
we expect, T > T,, H = 0,
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In terms of this notation, a selection of the relations between the
critical indices (o, Y, 6, etc.) would be:

single temperature region,

a'+2 +y'=2; (4)
critical isotherm plus a single temperature region,

a' + B(1+6) = 2,

§ = A/(A-Y); (5)
two temperature regions

Y=v', um=on',

A=AY (6)
relations invoalving correlatlon exponents,

v o= (2-n)v,

Y' = (2-m)v'; (7
and relatlons Involving the spatlal dimension or hyperscaling,

dv = 2 = «u,

2 =1 = d(8=1)/(841),

20 = dv + . (8)
On the numerical evidence, the hyperscallng reletions ‘8) were the
least well supported and those ol (6) suffered Inftially from the -
weakness of the accuracy In the T < T, numerical results. Many of

these _relatfons have been proven te be reigorous Inequallties,
CoR 4T



a' +28+v' >2, vy > (2-n)v,
v + vy > 24, S > A/(A-y),
a' + B(148) > 2. (9)

In order to understand what was going on, and to gain a deeper
understanding of these exponent relations, gen9r51 ideas that rcla-
ted them to scaling properties were put forth.’’ These ideas were
further dibeloped and extended by the use of tield theoretic
methods?? to yleld the renormalization group theory of critical
phenomena, which rests on the renormalization group hypothesisll’12
and has all the index relations (4-8) as a consequence for d < 4.

Now the trouble starts when one compares the results of the
renormalization group theory of critical phenomena with those of
the high-temperature series numerical computatgons. These high tem-
perature series results yield, for example13'1

Yy = 1.250 * 0.003,
. + 0.002
v = 0.638 0 o0
A= 1.563 + 0.003, (10)
16

and for the renormalization group cquality (8),
2N - dv - y = -0.028 + 0.003, d = 3,
= - 0.302 + 0,038, d = 4. (11)

These results show small but persistent deviutlonsl7frnm the expec=-
ted renormalization group results.“"18 in three dimenslons,

vy = 1.241 4 0.004, v = 0.630 ¢ 0.002,
2N - dv -y T 0. (1)

Other analyses of the high-temperature serles coefflclents are to
be found in this volume.

To study this discrepancy In detail, T prefer to put {t in a
broader context!l:12, and ccnslder the continuous-sapin 1sing model
which has both the spin-'4, lsiug model and Kuclldean, Boson, quantum
field theory as limiting casces.

The partition functlon for this model In
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where a is the lattice spacing, v = ad is the specifi§ volume per

lattice site, q is the lattice cocrdination number } 1s one-half

the set of nearest neighbor sites, and H, is the magnetic field at
i

site T. This model looks like a lattice-cutoff model field thecory.

If we perform the usual ampliiude (Z.,) and mass renormalizations

(mo2 =m? + ﬁm?), then we can rewrite (13) as

4+ N
Z(i-l) = M_l/.“jH d-'v.+ (xpz ;
-7 =]

-k AT ‘ . (14)

where the relatfon between the fleld theory language of (13) and
the statlisticoal mechinlcal language of (14) s

- i}
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qK(2d + m at + fmTat = LGaTg )/ 4d,
(4]

H lIl [t[l\':l;‘/(.?dz.’v)] I". (15)

Note that we have added a free parameter, K, and {mposced a normall-
zat ion condltton,

+
./-(h X' vxp()'x -Ax” )
BN ' (1)

K= " g% ’ o
dx expl=g, x ‘~Ax")



which fixes A as a function of go. Further note that C is the
usual [¢ ,4 ] commutator which diverges as a goes to zero for d > 2.

As usual, the renormalization conditions imposed on the two-po:lnt
function,

I—l
(2)(P.-P) - l ; Baﬁnglﬁh) exp[—Zﬂii;--_-]’a] . (17)

1 lh=0 ’

determine the renormalization constants Z3 and ém°. These renor-
malizarion conditions are

rl(;z)(p.-p) ~ m? + 4n?p’ 41e-, as p + 0,

2dZ3 -1 sen 2 2
- 'qn:r 01+ (2m)FCatpt e, (18)

in terms of

Ne=
g g - el
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. _____? RO (19)

where the expectation values are determined by the partition funce-
tion (14). These condlitlons lead to the relations,

mtTaT =1,
/j m (/7Y (qR/2d), (20)

The object to be studled I8 the dimensfonlens, rencermal lzed,
coupling constant

2R
d=4 , =v W ey V=24 ,
R = Bym d X?Id (1 lvll) (21)

. . 4 .
This quant{ty in bounded as T @ T by Schrader's” Inequality. [t
{t govs to zero, then Iwgﬁrm-nllng talls (B) and the correaponding
ficld theory iu trivial. It 1t {n finite, then hyperscal ing holds,



The conventional wisdom for the behavior of g(gg,a) is that
there is a limiting curve which is smoothly approached as a ~ 0.
By eq. (20) for a fixed, renormalized mass, this limit is equivaleut
to £ + » with fixed lattice spacing, i.e., the temperature approaches
the critical temperature. This limiting curve is conventionally
thought to rise monotonically from zero for g, = 0 to a finite limit
g* for %o = «, Specifically, the renormalization group hypo-
thesis11512,19 ig that there exists a unique, non-zero limit as
go > @ and a ~ 0 independent of the manner of approach. From this
hypothesis, as a statistical-mechanical problem corresponds to gq
fixed, and by eq. (15) g, = 8,3 'd, we must have g, > ® as a > C
for d < 4 and so g » g". As everything is thought to depend on g,
we must, based on this hypothesis, get the same result, i.e.,
universality, for zny g,-fixed, statistical-mechanical mndel. The
hypothesized smoothness and differentiability of the approach to
the limit yields the critical index relations.
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Pl 1. Contours of the renormaid fzed coupling constant, g, in the
f(,/‘. G, phime for the bodv=centered-cubice JTattfce.  Here
Vd T U/U6ATT) and G = o/ (T4p,) . The boldtace curve
represois g 2,78,



Baker and Kincaid11’19 have made a detailed investigation using
high-temperature series methods and concluded on numerical evidence
that the renormalization group hypothesis holds for d = 1, 2 (known
previously21) but fails in d = 3 and 4 dimensions. The results in
three dimensions are particularly interesting as Fig. 1 illustrat :s.
A much richer structure in the g-contour map is found than had been
anticipated. The top edge of the figure is a spread-out version of
the g, = @, a = 0 puint. Theyl? found that g = g* = 23.78 alone did
not appear to represent this point and that the g* contour also
extended into the interior and possessed a saddle point. We remark
in passing that such a Sgddle point reconciles these numerical
results with Schrader's rigorous results.

Whe "e can we look, theoretically, for the breakdown of hyper-
scaling in three and four dimensions? Looking back at eq. (8) we
note that the occurence of the spatial dimension d appears in associ-
ation with the relation of a single index such as v or 1 for a micro-
scopic pioperty tn a thermodynamic index such as ., 7y, ¢, etc. It
is therefore interesting to introduce a thermodynamic coupling con-
stant which repiaces the dependence on f9 in (21) by a combination
of thermodynamic vgsiablvu. The mos. obvious move 1s to use “he
terms from Sokal's pronf of the Josephson inequality to make the
replacement

Ay -
d (wx) //(c” ), (22)

however, as Cy ™ in(RC—K) for d = 2, this replacement would lead
to an infinite thermodvnamic coupling constant In two dimernsions.
I prefer to make the replacement

#do (ll_)(vRH)/(f‘;-l) 21
tne finds directly by usce of Flshor'53 results
pC (2=n)v, (2-n) 2 d(e=1)/(8+1) (24)
that
dv >y (5415 /(5=1) (25)
Henee §f we seloect
Q-Z-X
lls (20)

b ™ R EET)

Then, {ncluding a dimensfon and lattice dependent constant, .o,
related? to the amplitude of the decay of the two-spin, correlation



function with distance for T = T, in zero magnetic field, we may
conclude

gy > 8, (T To). (27)

Since g is bounded from above’ and goes to zero if hyperscaling
fails, and, ac we shall see below, since A, ¥ 0 and By # 0, g is
not zero, although it could become infinite, we conclude that it is
sufficient for (25) tu be a strict inequality for

20 < dv + . (28)

That is to say, 1f one of the hyperscaling relations (8) fails

[here (28)] then necessarily the others [here we will only see (25)]
fail as well. Certainly this result is expected,2 if the non-
hyperscaling relations continue to hold. We remark that numerically
BT is finite for the cases tested (e.g., d = 2,3,~) within error.

Now, to show that (26) does not go to zero as T » T., consider

M-1
(a-T

Ty e T4 (—» +% v=1) 17+ 0(t5) (29)

F(1) =
where r = tanh H. Bakc'rz5 has shown that the Yang-leo theorem
implies that

d ("' 1 ae e E p
F(1) = j T = [T = 17 4 eee, i 0, (30)

i.e., F(1) 1s T times a serles of Sticltjues. By standard Lhuuryzh.

we must have

flT
F(t) > 157 XS /r y 071 2~ (3D
1f we choose,
: 2
T, rl/rj . (32)

N2
slnce q*} 19 negatlve and dominates? vy then we have, as 14 = 0
for & > ?. by monotor fcity of the magret lzatim In tumpurutuxu.h

8 NS
M(1,) - ilTHl/ Rty > ; .‘_3/2/( el A ()]

which becomes,



u(T-TC)A/‘S 3_[}+3/2/(2A+%£](T-TC)A-Y (34)
J
or

& > B/ (A-Y) . (35)

This result is slightly stronger than the corresponding result of
Gaunt and Baker® because their result 1s for 4., and this one is
for A,. The subscripts refer to the order of the derivative with
respect to H involved in the definition. The result with 4, is
stronger than that with A, as2? Bomt2 2 Don-

We have reduced the theoretical study of the zpparent failure
of hyperscaling in d = 3, 4 dimensions to a study of (25) which
is defined in terms of only one and two-point correlations rather
than (28) which also involves 4-point correlations. Presumably one
could as well study the single-temnerature relation, which involves
only one and two-point correlations

2 - n <d (5-1)/(&+1) (36)

which is equivalent to (25) if eq. (7) holds, but we have no*t proven
this further simplification.

The fallure of critical i.dex, relations between correlation
functions Involving a different number of points is expected to
introduce, minimally, an anomalous dimension of the vacuum, i.e.,
replace d by d-.* in (8), and suggests that the genesis of the
breakdown of hyvperscaling comes 1n local properties at spin separa -
tions r << ¥, rather than sums over the whole lattice.
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